当前位置: 主页 > 视频资讯 > 视频行业标准 > MPEG-4视频编码核心思想及技术研究(3)

MPEG-4视频编码核心思想及技术研究(3)

2008-10-23   互联网 / 未知 点击: 标签:视频编码 MPEG-4
  

    2. VOP视频编码技术
    视频对象平面(VOP,Video Object Plane)是视频对象(VO)在某一时刻的采样,VOP是MPEG-4视频编码的核心概念。 MPEG-4在编码过程中针对不同VO采用不同的编码策略,即对前景VO的压缩编码尽可能保留细节和平滑;对背景VO则采用高压缩率的编码策略,甚至不予传输而在解码端由其他背景拼接而成。这种基于对象的视频编码不仅克服了第一代视频编码中高压缩率编码所产生的方块效应,而且使用户可与场景交互,从而既提高了压缩比,又实现了基于内容的交互,为视频编码提供了广阔的发展空间。

    MPEG-4支持任意形状图像与视频的编解码。对于任意形状视频对象。对于极低比特率实时应用,如可视电话、会议电视,MPEG-4则采用VLBV (Very Low Bit-rate Video,极低比特率视频)核进行编码。

    传统的矩形图在MPEG-4中被看作是VO的一种特例,这正体现了传统编码与基于内容编码在MPEG-4中的统一。VO概念的引入,更加符合人脑对视觉信息的处理方式,并使视频信号的处理方式从数字化进展到智能化,从而提高了视频信号的交互性和灵活性,使得更广泛的视频应用及更多的内容交互成为可能。因此VOP视频编码技术被誉为视频信号处理技术从数字化进入智能化的初步探索。

    3. 视频编码可分级性技术  
    随着因特网业务的巨大增长,在速率起伏很大的IP(Internet Protocol)网络及具有不同传输特性的异构网络上进行视频传输的要求和应用越来越多。在这种背景下,视频分级编码的重要性日益突出,其应用非常广泛,且具有很高的理论研究及实际应用价值,因此受到人们的极大关注。 <>  
    视频编码的可分级性(scalability)是指码率的可调整性,即视频数据只压缩一次,却能以多个帧率、空间分辨率或视频质量进行解码,从而可支持多种类型用户的各种不同应用要求。 <>  
    MPEG-4通过视频对象层(VOL,Video Object Layer)数据结构来实现分级编码。MPEG-4提供了两种基本分级工具,即时域分级(Temporal Scalability)和空域分级(Spatial Scalability),此外还支持时域和空域的混合分级。每一种分级编码都至少有两层VOL,低层称为基本层,高层称为增强层。基本层提供了视频序列的基本信息,增强层提供了视频序列更高的分辨率和细节。 <>  
    在随后增补的视频流应用框架中,MPEG-4提出了FGS(Fine Granularity Scalable,精细可伸缩性)视频编码算法以及 PFGS(Progressive Fine Granularity Scalable,渐进精细可伸缩性)视频编码算法。
    FGS编码实现简单,可在编码速率、显示分辨率、内容、解码复杂度等方面提供灵活的自适应和可扩展性,且具有很强的带宽自适应能力和抗误码性能。但还存在编码效率低于非可扩展编码及接收端视频质量非最优两个不足。

    PFGS则是为改善FGS编码效率而提出的视频编码算法,其基本思想是在增强层图像编码时使用前一帧重建的某个增强层图像为参考进行运动补偿,以使运动补偿更加有效,从而提高编码效率。

    4. 运动估计与运动补偿技术

    MPEG-4采用I-VOP、P-VOP、B-VOP三种帧格式来表征不同的运动补偿类型。它采用了H.263中的半像素搜索(half pixel searching)技术和重叠运动补偿(overlapped motion compensation)技术,同时又引入重复填充(repetitive padding)技术和修改的块(多边形)匹配(modified block (polygon)matching)技术以支持任意形状的VOP区域。  
    此外,为提高运动估计算法精度,MPEG-4采用了MVFAST (Motion Vector Field Adaptive Search Technique)和改进的PMVFAST (Predictive MVFAST)方法用于运动估计。对于全局运动估计,则采用了基于特征的快速顽健的FFRGMET(Feature- based Fast and Robust Global Motion Estimation Technique)方法。  
    在MPEG-4视频编码中,运动估计相当耗时,对编码的实时性影响很大。因此这里特别强调快速算法。运动估计方法主要有像素递归法和块匹配法两大类,前者复杂度很高,实际中应用较少,后者则在H.263和MPEG中广泛采用。在块匹配法中,重点研究块匹配准则及搜索方法。目前有三种常用的匹配准则:
    (1)绝对误差和(SAD, Sum of Absolute Difference)准则;

    (2)均方误差(MSE, Mean Square Error)准则;

    (3)归一化互相关函数(NCCF, Normalized Cross Correlation Function)准则。

   在上述三种准则中,SAD准则具有不需乘法运算、实现简单方便的优点而使用最多,但应清楚匹配准则的选用对匹配结果影响不大。


    在选取匹配准则后就应进行寻找最优匹配点的搜索工作。最简单、最可靠的方法是全搜索法(FS, Full Search),但计算量太大,不便于实时实现。因此快速搜索法应运而生,主要有交叉搜索法、二维对数法和钻石搜索法,其中钻石搜索法被MPEG-4校验模型(VM, Verification Model)所采纳,下面详细介绍。

   钻石搜索(DS, Diamond Search)法以搜索模板形状而得名,具有简单、鲁棒、高效的特点,是现有性能最优的快速搜索算法之一。其基本思想是利用搜索模板的形状和大小对运动估计算法速度及精度产生重要影响的特性。在搜索最优匹配点时,选择小的搜索模板可能会陷入局部最优,选择大的搜索模板则可能无法找到最优点。因此DS算法针对视频图像中运动矢量的基本规律,选用了两种形状大小的搜索模板。
大钻石搜索模板(LDSP, Large Diamond Search Pattern),包含9个候选位置;

  小钻石搜索模板(SDSP, Small Diamond Search Pattern),包含5个候选位置。 www.av110.net

  
    DS算法搜索过程如下:开始阶段先重复使用大钻石搜索模板,直到最佳匹配块落在大钻石中心。由于LDSP步长大,因而搜索范围广,可实现粗定位,使搜索不会陷于局部最小,当粗定位结束后,可认为最优点就在LDSP 周围8 个点所围菱形区域中。然后再使用小钻石搜索模板来实现最佳匹配块的准确定位,以不产生较大起伏,从而提高运动估计精度。   
     此外Sprite视频编码技术也在MPEG-4中应用广泛,作为其核心技术之一。Sprite又称镶嵌图或背景全景图,是指一个视频对象在视频序列中所有出现部分经拼接而成的一幅图像。利用Sprite可以直接重构该视频对象或对其进行预测补偿编码。  
    Sprite视频编码可视为一种更为先进的运动估计和补偿技术,它能够克服基于固定分块的传统运动估计和补偿技术的不足,MPEG-4正是采用了将传统分块编码技术与Sprite编码技术相结合的策略。 


   4 结束语  
    多媒体数据压缩编码的发展趋势是基于内容的压缩,这实际上是信息处理的高级阶段,更加向人自身的信息处理方式靠近。人的信息处理并不是基于信号的,而是基于一个比较抽象的、能够直接进行记忆和处理的方式。

    MPEG-4作为新一代多媒体数据压缩编码的典型代表,它第一次提出了基于内容、基于对象的压缩编码思想。它要求对自然或合成视听对象作更多分析甚至是理解,这正是信息处理的高级阶段,因而代表了现代数据压缩编码技术的发展方向。

    MPEG-4实现了从矩形帧到VOP的转变以及基于像素的传统编码向基于对象和内容的现代编码的转变,这正体现了传统视频编码与新一代视频编码的有机统一。基于内容的交互性是MPEG-4的核心思想,这对于视频编码技术的发展方向及广泛应用都具有特别重要的意义。

顶一下
(0)
0%
踩一下
(0)
0%
精彩推荐